U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Status:
US Approved OTC
Source:
21 CFR 341.14(a)(4) cough/cold:antitussive dextromethorphan hydrobromide
Source URL:
First approved in 1954
Source:
Romilar by Hoffmann-La Roche
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Dextromethorphan is a non-narcotic morphine derivative widely used as an antitussive for almost 40 years. It has attracted attention due to its anticonvulsant and neuroprotective properties. It is a cough suppressant in many over-the-counter cold and cough medicines. In 2010, the FDA approved the combination product dextromethorphan/quinidine for the treatment of pseudobulbar affect. Dextromethorphan suppresses the cough reflex by a direct action on the cough center in the medulla of the brain. Dextromethorphan shows high-affinity binding to several regions of the brain, including the medullary cough center. This compound is an NMDA receptor antagonist and acts as a non-competitive channel blocker. It is one of the widely used antitussives and is used to study the involvement of glutamate receptors in neurotoxicity. Dextromethorphan (DM) is a sigma-1 receptor agonist and an uncompetitive NMDA receptor antagonist. The mechanism by which dextromethorphan exerts therapeutic effects in patients with pseudobulbar affect is unknown. Dextromethorphan should not be taken with monoamine oxidase inhibitors due to the potential for serotonin syndrome. Dextromethorphan is extensively metabolized by CYP2D6 to dextrorphan, which is rapidly glucuronidated and unable to cross the blood-brain barrier.